六十年专注冶金/矿山/水利行业泵系统解决方案

企业邮箱|联系我们|中文版|English|Russian

ZZYP煤气调节阀卡涩原因分析与改进方法

发布日期:2019-09-18  浏览次数:2179

  1案例

  日照钢铁有限公司动力厂煤气综合利用发电车间现有8台50MW高炉煤气发电机组,总装机容量400MW,是目前海内冶金企业规模最大的高炉煤气综合利用发电厂,配套8台220t/h锅炉,锅炉的燃料就是炼铁出产过程中的剩余煤气。为了实现对煤气管网压力和发电负荷的调节,每台锅炉设计有8台煤气调节阀,调节阀直径800mm。阀门工作原理比较简朴就是执行机构接受DCS发出的4~20mA电流信号,经由阀门定位器将电信号转换为气压信号,推动活塞气缸动作,从而带动蝶阀阀板动作,改变阀板截流面积,达到调节介质流量的功能。但是在实际使用过程中煤气调节阀各类故障较多,从2010年度检验车间维修记实来看,共计处理煤气调节阀故障题目98台次,其中仪表信号、定位器题目8次,机械卡涩90台次,机械卡涩中仅有3次是填料压盖处过紧,其余的均是在前后轴套处卡涩。

  以前一旦泛起调节阀题目,往往是工艺职员从DCS监控画面发现调节阀的指令与反馈值分歧错误应,联系热工仪表职员,仪表职员检查信号、线路、都正常,再联系机械维修职员将气动执行机构与阀体部件分离,在不带蝶阀阀板的情况下,发出信号与执行机构滚念头械位置是一致的。机械职员的处理办法主要是在填料压盖处喷除锈剂润滑,人工加上管钳在轴上加力配合,反复流动。卡涩比较厉害的就用气焊烤轴套处,再严峻的就需要停炉在管道上开人孔,大锤敲击阀板,仪表职员配合加大气动执行器气源压力,现场手动控制阀门定位器,协助强制流动阀门,但是以上办法只能解决一时,治标不治本,使用2~3个月后会继承泛起阀门不灵活或者卡涩现象。

  2原因分析

  我们总结多年使用调节阀的经验,经由细致的研究,总结出造成调节阀卡涩的原因有如下几方面。

  2.1安装方式分歧适

  现在大都是垂直、正立安装在水平管道上(阀板轴垂直水平面),这种方法是保证执行机构在煤气管道的上部,但是阀的后轴处于管道底部,煤气管道中的水分、杂质等就会落到或淤积于后轴承处,日久天长将旷地空闲填满,造成侵蚀卡住阀轴。

  2.2设计结构不公道

  经由历次解体维修发现,阀板驱动轴的轴套与阀体的间隙处被一些异物布满,有泥渣、水、锈蚀等结垢。而且原设计的轴套长度太大,调节阀的前后轴轴套部位承受阀轴往返滚动的摩擦力,跟着运行时间的延长,煤气中的粉尘,管道的锈蚀杂质等就轻易进入轴套间隙,增大自身滚动阻力,逐渐积累的混合物就会将旷地空闲填满,将阀轴、轴套和阀体固化在一体,阻碍阀轴的灵活滚动。

  2.3煤气侵蚀

  目前海内所有钢厂高炉煤气管道都存在着严峻的侵蚀现象,煤气管道受到较强的侵蚀,主要表现在补偿器会常常洞蚀开裂,管路上煤气泄漏、管线上的阀门、减压阀等部件因为侵蚀无法正常运行,高炉煤气的侵蚀性给设备运行和煤气管道带来了严峻的安全隐患。

  我们的煤气管道同样也存在局部侵蚀透漏气和补偿器波纹管处洞蚀滴水的现象,由此可知对阀门影响也是很严峻的,为了对煤气侵蚀情况进行分析,我们在发电车间的两路煤气管道处分别取煤气样进行分析化验。

  表1高炉煤气中的成分分析%VOL

  高温的H2、CO、H2O等对钢铁亦有相称的侵蚀,因为煤气中含水,特别是发电系同一般都在整个煤气管网的后面或者末端,管道中有着数目较多的冷凝水,经由检测日钢电厂煤气管道中凝聚水pH值在5~6左右,电导率在2762μs/cm,此外含有大量铁离子、氯离子、根离子。部门资料显示Cl-和SO42-诱发应力侵蚀,就煤气管道和设备的侵蚀形态而言,主要长短平均侵蚀,其详细表现形态为:(1)垢下侵蚀,又称缝隙侵蚀;(2)雀斑侵蚀;(3)点侵蚀;(4)磨损侵蚀;(5)应力侵蚀。冷凝水的存在对管道具有一定的侵蚀性,电导率越高侵蚀速度越快。煤气介质脏污及侵蚀的特点是造成阀门卡涩的主要诱因。

  2.4使用不当

  因为目前煤气调节阀没有投入闭环自动调节运行,阀门依赖运行职员人为通过DCS设定开度进行调节,有时负荷比较不乱,阀板长时间处于某一固定的角度,不常常流动,也轻易造成阀门的动作不灵活。

  3改进措施

  3.1安装方式

  安装方式由垂直安装改为水平安装。避免介质中杂质、水分和污垢在重力的作用下沉积到轴套间隙处。

  3.2降低煤气酸性

  因为煤气酸性对整个煤气管道系统、大型阀门、补偿器等危害较大,已引起公司高层领导的关注,公司采用了在TRT进口处煤气管道处加喷碱液中和的办法,经由对发电煤气管道中冷凝水取样分析得知其pH值为6左右。

  3.3对设计不公道的轴套部门进行改进

  将轴套尺寸缩短,前轴套长度由400减为200,后轴套长度由800减为200。材质方面由不锈钢,根据JB/T1759-2010,改为可铸铜铜合金,牌号为:ZCuSn10Pb1。即使泛起缝隙内部稍微结垢现象,因为轴套长度大为减少,所以摩擦力就相应减少了1/2到3/4,阀门动作相对就轻易良多。同时也将此项改进建议无偿提供应供货厂家,以后再提报此类阀门备件时,要求厂家按照我们的要求定做。

  检验检查中还发现,阀轴上部填料压盖过紧,个别的填料压盖螺丝因扭矩过大断裂。通过机加工重新加工压盖时,适当增大间隙,间隙处用黄油灌满,防止漏煤气。

  3.4工艺方面

  改进工艺规程,要求司炉职员每班对所有煤气调节阀进行流动试验,并做好表格记实指令与反馈值,防止阀板长时间固定在某一开度下,造成结垢固化抱轴。

  3.5维修策略方面

  购置4台备用调节阀,采用替代轮流维修法,就是一旦有停炉机会根据工艺职员流动试验情况,找出卡涩最严峻的阀门,进行更换。下线的调节阀进行解体检验改进后,润滑保养备用,以节省停炉时间。

  3.6润滑维护方面

  每月对在线运行的煤气调节阀填料压盖,前后轴处加油润滑,做好设备的点检,及时了解设备运行状态。仪控职员做好控制部门(阀门定位器)设备的防雨、防腐,按期检查气源压力,各气源连接部门有无堵、漏现象,及压缩空气品质。

  另外适当进步压缩气源压力,增大执行机构的输出力。仪表职员通过调节定位器前的减压阀,将压力不乱在0.5MPa左右。每次有停炉大修机会铺排清理管道内的淤泥、杂质碎片等,以减少磨损侵蚀。

  4实施效果

  通过制定修改工艺规程,使操纵职员也时刻关注调节阀的运行状态,达到了全员治理设备的目的,实际上也是状态维修模式的一个尝试。改进后减少了维修量,维修周期均匀由原先的2~3个月延长到6~8个月,维修工人的劳动强度大大降低,枢纽是保证了调节阀的灵活、可靠,为锅炉安全不乱运行提供了设备保障。此种解决办法还可以推广到煤气管道上的其他大型阀门。